Large Area Microchannel Cooling Using Laminate Constructions

May 5, 2004

microVection, Inc.
Geoff Campbell
(303) 280-1800
geoff@microvection.com

Micro Cooling Concepts, Inc.

Jay Fryer
(714) 847-9945

jayfryer@microcoolingconcepts.com

microVection & Micro Cooling Concepts

micro Vection, Inc.

- Research & Development
- Thermal Analysis
- Fluid Analysis
- Experimentation

- Comm. Cooler Sales
- Mechanical Design
- Fabrication
- Experimentation

Prototype micro-finned microchannel coolers

microVection, Inc.

- Small R&D business formed in 2001
 - Focused on development of advanced heat transfer technologies
 - 3 employees, 1000 ft² facility
 - More than 15 years' experience in microchannel cooling systems

Micro Cooling Concepts (MC²)

- Microchannel Cooler Fabrication
 Business Founded in 2000
 - 3 Employees
 - 1700 ft² Facility
- MC² Has Manufactured & Sold More Than 7000 Microchannel Coolers
 - Laser Diodes & Diode Arrays
 - Aerospace Systems

Diode Array Coolers

Microchannel Technology Status

- Single-phase simple microchannels are a mature, commercially successful technology
 - Thousands of coolers built and sold
 - Materials: Cu, Ni, Stainless Steel, Inconel, Waspaloy, Cu/W, Cu/Moly, Kovar

- Coolants: Water, Aqueous Mixtures, FC-72, LOX, JP-7, N₂, He
- Channel widths of 12.5 250 _m
- Tested at heat fluxes up to 2.2 kW/cm²
- 10 < Re < 3000

Laminated Foil Fabrication Process

High Heat Flux Applications of Laminate Foil Technology

- Transpiration-Cooled
 - Transpiration Cooled Nosetips
 - Film-Cooled Leading Edges
 - Cooled Antennas and Antenna Windows
- Microchannel-Cooled
 - Leading Edges for Hypersonic Vehicles
 - Scramjet Engine Fuel Injection Struts
 - Rocket Engine Combustors

Economical Fabrication of Large Micro-Impingement Cooling Panels

- Phase I SBIR Contract with Saddleback Aerospace
- Grant #DE-FG03-99ER82874
- Contract Duration: 9/4/99 3/4/00

Program Objective and Requirements

Objective:

- Development practical, affordable means of applying microchannel cooling over large areas
- Show that diverter requirements can be met with a tungsten armor/helium coolant system

Requirements

- 30 MW/m² incident heat flux
- 0.75 mm tungsten armor
- Inlet He @ 800°C and 4 MPa

Economical Fabrication of Large Micro-Impingement Cooling Panels (Phase I SBIR)

Hexagonal Array Microchannel Concept

Analytic Performance Trades

- Compared 3 material systems
 - Copper / Tungsten
 - Nickel / Tungsten
 - Tungsten / Tungsten
- Used 1D compressible flow model to evaluate pressure drop & heat transfer through the system
- Results showed that for thin armors, surface temperatures could be maintained well below melt

Etched Foils for Phase I Prototype

Fabrication and Testing of Glidcop Prototype

Prototype after diffusion bonding

Prototype in test fixture

Test Results

- Test article designed as two prototypes sharing a common face
 - One side heated with water (high flow rate)
 - One side cooled with helium
 - Bonded as single unit
- Test results were inconclusive
 - Much lower thermal resistance than predicted (0.275 K*cm^2/W)
 - Only one data point taken at high heat flux (@ 30-50% higher He flow rate)

Tungsten Diffusion Bonding Experiments

- Diffusion bonding of 0.05 mm tungsten foils was evaluated
- Three bonding aids were investigated
 - Nickel & NiB₂
 - Vanadium
 - Titanium
- Titanium was the most promising
 - Vanadium delaminated
 - Nickel caused recrystallization of the tungsten

Diffusion Bonded Test Sample

Results of Tungsten Etching Trials

- Photochemical etching trials were performed on thin tungsten foils
- Used patterns employed for the prototype
- Electrolytic etching was shown to provide clean etches without degradation of the photoresist

Hexagonal Microchannel Array Etched in 0.002" Thick Tungsten Foil

Summary of Hex-Array Concept

- Provides Affordable Microchannel-Class Cooling Over Large Areas
- Allows Use of Helium as Coolant
- Compatible with Tungsten as Armor and Heatsink Material
- Can Form Monolithic or Functionally Graded Structures